Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.437
Filtrar
2.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661717

RESUMO

During secondary infection with influenza virus, plasma cells (PCs) develop within the lung, providing a local source of antibodies. However, the site and mechanisms that regulate this process are poorly defined. Here, we show that while circulating memory B cells entered the lung during rechallenge and were activated within inducible bronchus-associated lymphoid tissues (iBALTs), resident memory B (BRM) cells responded earlier, and their activation occurred in a different niche: directly near infected alveoli. This process required NK cells but was largely independent of CD4 and CD8 T cells. Innate stimuli induced by virus-like particles containing ssRNA triggered BRM cell differentiation in the absence of cognate antigen, suggesting a low threshold of activation. In contrast, expansion of PCs in iBALTs took longer to develop and was critically dependent on CD4 T cells. Our work demonstrates that spatially distinct mechanisms evolved to support pulmonary secondary PC responses, and it reveals a specialized function for BRM cells as guardians of the alveoli.


Assuntos
Linfócitos T CD4-Positivos , Pulmão , Infecções por Orthomyxoviridae , Plasmócitos , Animais , Plasmócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Camundongos , Linfócitos T CD4-Positivos/imunologia , Camundongos Endogâmicos C57BL , Células Matadoras Naturais/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Células B de Memória/imunologia , Ativação Linfocitária/imunologia , Orthomyxoviridae/imunologia , Orthomyxoviridae/fisiologia
3.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305155

RESUMO

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Assuntos
Virus da Influenza A Subtipo H5N1 , 60550 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vírus da Parainfluenza 5 , Animais , Humanos , Camundongos , Furões/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Imunidade Humoral , Imunidade nas Mucosas , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , 60550/química , 60550/classificação , 60550/genética , 60550/imunologia , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/transmissão , Influenza Aviária/virologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , 60514/métodos , Vírus da Parainfluenza 5/genética , Vírus da Parainfluenza 5/imunologia , Vírus da Parainfluenza 5/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Administração Intranasal , Aves Domésticas/virologia , Imunoglobulina A/imunologia , Linfócitos T/imunologia
4.
J Virol ; 98(3): e0199523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323813

RESUMO

Historically, antibody reactivity to pathogens and vaccine antigens has been evaluated using serological measurements of antigen-specific antibodies. However, it is difficult to evaluate all antibodies that contribute to various functions in a single assay, such as the measurement of the neutralizing antibody titer. Bulk antibody repertoire analysis using next-generation sequencing is a comprehensive method for analyzing the overall antibody response; however, it is unreliable for estimating antigen-specific antibodies due to individual variation. To address this issue, we propose a method to subtract the background signal from the repertoire of data of interest. In this study, we analyzed changes in antibody diversity and inferred the heavy-chain complementarity-determining region 3 (CDRH3) sequences of antibody clones that were selected upon influenza virus infection in a mouse model using bulk repertoire analysis. A decrease in the diversity of the antibody repertoire was observed upon viral infection, along with an increase in neutralizing antibody titers. Using kernel density estimation of sequences in a high-dimensional sequence space with background signal subtraction, we identified several clusters of CDRH3 sequences induced upon influenza virus infection. Most of these repertoires were detected more frequently in infected mice than in uninfected control mice, suggesting that infection-specific antibody sequences can be extracted using this method. Such an accurate extraction of antigen- or infection-specific repertoire information will be a useful tool for vaccine evaluation in the future. IMPORTANCE: As specific interactions between antigens and cell-surface antibodies trigger the proliferation of B-cell clones, the frequency of each antibody sequence in the samples reflects the size of each clonal population. Nevertheless, it is extremely difficult to extract antigen-specific antibody sequences from the comprehensive bulk antibody sequences obtained from blood samples due to repertoire bias influenced by exposure to dietary antigens and other infectious agents. This issue can be addressed by subtracting the background noise from the post-immunization or post-infection repertoire data. In the present study, we propose a method to quantify repertoire data from comprehensive repertoire data. This method allowed subtraction of the background repertoire, resulting in more accurate extraction of expanded antibody repertoires upon influenza virus infection. This accurate extraction of antigen- or infection-specific repertoire information is a useful tool for vaccine evaluation.


Assuntos
Anticorpos Antivirais , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células Clonais/citologia , Células Clonais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Vacinas contra Influenza/imunologia , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia
5.
Science ; 383(6684): eadg0564, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359115

RESUMO

Influenza viruses escape immunity owing to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. We found that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 bound and disengaged CD19 from its chaperone CD81, permitting CD19 to translocate to the B cell receptor complex to trigger signaling. Moreover, Gb3 regulated major histocompatibility complex class II expression to increase diversity of T follicular helper and GC B cells reactive with subdominant epitopes. In influenza infection, elevating Gb3, either endogenously or exogenously, promoted broadly reactive antibody responses and cross-protection. These data demonstrate that Gb3 determines the affinity and breadth of B cell immunity and has potential as a vaccine adjuvant.


Assuntos
Anticorpos Antivirais , Linfócitos B , Centro Germinativo , Infecções por Orthomyxoviridae , Orthomyxoviridae , Triexosilceramidas , Formação de Anticorpos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/imunologia , Triexosilceramidas/metabolismo , Triexosilceramidas/farmacologia , Animais , Camundongos , Camundongos Knockout , Humanos , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia
6.
Nat Immunol ; 25(3): 418-431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225437

RESUMO

After a century of using the Bacillus Calmette-Guérin (BCG) vaccine, our understanding of its ability to provide protection against homologous (Mycobacterium tuberculosis) or heterologous (for example, influenza virus) infections remains limited. Here we show that systemic (intravenous) BCG vaccination provides significant protection against subsequent influenza A virus infection in mice. We further demonstrate that the BCG-mediated cross-protection against influenza A virus is largely due to the enrichment of conventional CD4+ effector CX3CR1hi memory αß T cells in the circulation and lung parenchyma. Importantly, pulmonary CX3CR1hi T cells limit early viral infection in an antigen-independent manner via potent interferon-γ production, which subsequently enhances long-term antimicrobial activity of alveolar macrophages. These results offer insight into the unknown mechanism by which BCG has persistently displayed broad protection against non-tuberculosis infections via cross-talk between adaptive and innate memory responses.


Assuntos
Vacina BCG , Vírus da Influenza A , Infecções por Orthomyxoviridae , Animais , Camundongos , Administração Intravenosa , Vacina BCG/imunologia , Células T de Memória , Imunidade Treinada , Vacinação , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle
7.
Nature ; 621(7980): 813-820, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587341

RESUMO

Disruption of the lung endothelial-epithelial cell barrier following respiratory virus infection causes cell and fluid accumulation in the air spaces and compromises vital gas exchange function1. Endothelial dysfunction can exacerbate tissue damage2,3, yet it is unclear whether the lung endothelium promotes host resistance against viral pathogens. Here we show that the environmental sensor aryl hydrocarbon receptor (AHR) is highly active in lung endothelial cells and protects against influenza-induced lung vascular leakage. Loss of AHR in endothelia exacerbates lung damage and promotes the infiltration of red blood cells and leukocytes into alveolar air spaces. Moreover, barrier protection is compromised and host susceptibility to secondary bacterial infections is increased when endothelial AHR is missing. AHR engages tissue-protective transcriptional networks in endothelia, including the vasoactive apelin-APJ peptide system4, to prevent a dysplastic and apoptotic response in airway epithelial cells. Finally, we show that protective AHR signalling in lung endothelial cells is dampened by the infection itself. Maintenance of protective AHR function requires a diet enriched in naturally occurring AHR ligands, which activate disease tolerance pathways in lung endothelia to prevent tissue damage. Our findings demonstrate the importance of endothelial function in lung barrier immunity. We identify a gut-lung axis that affects lung damage following encounters with viral pathogens, linking dietary composition and intake to host fitness and inter-individual variations in disease outcome.


Assuntos
Células Endoteliais , Pulmão , Infecções por Orthomyxoviridae , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Camundongos , Apelina/metabolismo , Dieta , Células Endoteliais/metabolismo , Endotélio/citologia , Endotélio/metabolismo , Células Epiteliais/metabolismo , Eritrócitos/metabolismo , Influenza Humana/imunologia , Influenza Humana/metabolismo , Intestinos/metabolismo , Leucócitos/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
8.
Cell Rep ; 42(7): 112806, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440406

RESUMO

This study identifies interleukin-6 (IL-6)-independent phosphorylation of STAT3 Y705 at the early stage of infection with several viruses, including influenza A virus (IAV). Such activation of STAT3 is dependent on the retinoic acid-induced gene I/mitochondrial antiviral-signaling protein/spleen tyrosine kinase (RIG-I/MAVS/Syk) axis and critical for antiviral immunity. We generate STAT3Y705F/+ knockin mice that display a remarkably suppressed antiviral response to IAV infection, as evidenced by impaired expression of several antiviral genes, severe lung tissue injury, and poor survival compared with wild-type animals. Mechanistically, STAT3 Y705 phosphorylation restrains IAV pathogenesis by repressing excessive production of interferons (IFNs). Blocking phosphorylation significantly augments the expression of type I and III IFNs, potentiating the virulence of IAV in mice. Importantly, knockout of IFNAR1 or IFNLR1 in STAT3Y705F/+ mice protects the animals from lung injury and reduces viral load. The results indicate that activation of STAT3 by Y705 phosphorylation is vital for establishment of effective antiviral immunity by suppressing excessive IFN signaling induced by viral infection.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Fator de Transcrição STAT3 , Animais , Camundongos , Antivirais , Imunidade Inata , Interferons , Receptores de Interferon , Transdução de Sinais , Infecções por Orthomyxoviridae/imunologia , Fator de Transcrição STAT3/imunologia
9.
J Virol ; 97(6): e0049323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255439

RESUMO

Influenza defective interfering (DI) viruses have long been considered promising antiviral candidates because of their ability to interfere with replication-competent viruses and induce antiviral immunity. However, the mechanisms underlying DI-mediated antiviral immunity have not been extensively explored. Here, we demonstrated the interferon (IFN)-independent protection conferred by the influenza DI virus against homologous virus infection in mice deficient in type I and III IFN signaling. We identified unique host signatures responding to DI coinfection by integrating transcriptional and posttranscriptional regulatory data. DI-treated mice exhibited reduced viral transcription, less intense inflammatory and innate immune responses, and primed multiciliated cell differentiation in their lungs at an early stage of infection, even in the absence of type I or III IFNs. This increased multiciliogenesis could also be detected at the protein level via the immunofluorescence staining of lung tissue from DI-treated mice. Overall, our study provides mechanistic insight into the protection mediated by DIs, implying a unifying theme involving inflammation and multiciliogenesis in maintaining respiratory homeostasis and revealing their IFN-independent antiviral activity. IMPORTANCE During replication, the influenza virus generates genetically defective viruses. These are found in natural infections as part of the virus population within the infected host. Some versions of these defective viruses are thought to have protective effects through their interference with replication-competent viruses and induction of antiviral immunity. To better determine the mechanisms underlying the protective effects of these defective interfering (DI) viruses, we tested a DI that we previously identified in vitro with mice. Mice that were infected with a mix of wild-type influenza and DI viruses had less intense inflammatory and innate immune responses than did mice that were infected with the wild-type virus only, even when type I or III interferons, which are cytokines that play a prominent role in defending the respiratory epithelial barrier, were absent. More interestingly, the DI-infected mice had primed multiciliated cell differentiation in their lungs, indicating the potential promotion of epithelial repair by DIs.


Assuntos
Diferenciação Celular , Vírus Defeituosos Interferentes , Infecções por Orthomyxoviridae , Animais , Camundongos , Interferons , Replicação Viral , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae
10.
Nature ; 618(7965): 590-597, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258672

RESUMO

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Assuntos
Anticorpos Antivirais , Especificidade de Anticorpos , Vírus da Influenza A , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Mimetismo Molecular , Neuraminidase , Animais , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Especificidade de Anticorpos/imunologia , Arginina/química , Domínio Catalítico , Hemaglutininas Virais/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/enzimologia , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/enzimologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/antagonistas & inibidores , Neuraminidase/química , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Estações do Ano , Ácidos Siálicos/química
11.
J Virol ; 97(4): e0010223, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022164

RESUMO

Whether and how a local virus infection affects the hematopoietic system in the bone marrow is largely unknown, unlike with systemic infection. In this study, we showed that influenza A virus (IAV) infection leads to demand-adapted monopoiesis in the bone marrow. The beta interferon (IFN-ß) promoter stimulator 1 (IPS-1)-type I IFN-IFN-α receptor 1 (IFNAR1) axis-mediated signaling was found to induce the emergency expansion of the granulocyte-monocyte progenitor (GMP) population and upregulate the expression of the macrophage colony-stimulating factor receptor (M-CSFR) on bipotent GMPs and monocyte progenitors via the signal transducer and activator of transcription 1 (STAT1), leading to a scaled-back proportion of granulocyte progenitors. To further address the influence of demand-adapted monopoiesis on IAV-induced secondary bacterial infection, IAV-infected wild-type (WT) and Stat1-/- mice were challenged with Streptococcus pneumoniae. Compared with WT mice, Stat1-/- mice did not demonstrate demand-adapted monopoiesis, had more infiltrating granulocytes, and were able to effectively eliminate the bacterial infection. IMPORTANCE Our findings show that influenza A virus infection induces type I interferon (IFN)-mediated emergency hematopoiesis to expand the GMP population in the bone marrow. The type I IFN-STAT1 axis was identified as being involved in mediating the viral-infection-driven demand-adapted monopoiesis by upregulating M-CSFR expression in the GMP population. As secondary bacterial infections often manifest during a viral infection and can lead to severe or even fatal clinical complications, we further assessed the impact of the observed monopoiesis on bacterial clearance. Our results suggest that the resulting decrease in the proportion of granulocytes may play a role in diminishing the IAV-infected host's ability to effectively clear secondary bacterial infection. Our findings not only provide a more complete picture of the modulatory functions of type I IFN but also highlight the need for a more comprehensive understanding of potential changes in hematopoiesis during local infections to better inform clinical interventions.


Assuntos
Interferon Tipo I , Infecções por Orthomyxoviridae , Receptor de Fator Estimulador de Colônias de Macrófagos , Fator de Transcrição STAT1 , Regulação para Cima , Animais , Humanos , Camundongos , Vírus da Influenza A/imunologia , Interferon Tipo I/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Infecções por Orthomyxoviridae/imunologia , Hematopoese/imunologia , Células Progenitoras de Granulócitos e Macrófagos/imunologia , Streptococcus pneumoniae/imunologia , Infecções Pneumocócicas/imunologia
12.
Front Immunol ; 14: 919800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960051

RESUMO

Influenza A virus infection (IAV) often leads to acute lung injury that impairs breathing and can lead to death, with disproportionate mortality in children and the elderly. Surfactant Protein A (SP-A) is a calcium-dependent opsonin that binds a variety of pathogens to help control pulmonary infections by alveolar macrophages. Alveolar macrophages play critical roles in host resistance and susceptibility to IAV infection. The effect of SP-A on IAV infection and antiviral response of macrophages, however, is not understood. Here, we report that SP-A attenuates IAV infection in a dose-dependent manner at the level of endosomal trafficking, resulting in infection delay in a model macrophage cell line. The ability of SP-A to suppress infection was independent of its glycosylation status. Binding of SP-A to hemagglutinin did not rely on the glycosylation status or sugar binding properties of either protein. Incubation of either macrophages or IAV with SP-A slowed endocytic uptake rate of IAV. SP-A interfered with binding to cell membrane and endosomal exit of the viral genome as indicated by experiments using isolated cell membranes, an antibody recognizing a pH-sensitive conformational epitope on hemagglutinin, and microscopy. Lack of SP-A in mice enhanced IFNß expression, viral clearance and reduced mortality from IAV infection. These findings support the idea that IAV is an opportunistic pathogen that co-opts SP-A to evade host defense by alveolar macrophages. Our study highlights novel aspects of host-pathogen interactions that may lead to better understanding of the local mechanisms that shape activation of antiviral and inflammatory responses to viral infection in the lung.


Assuntos
Vírus da Influenza A , Macrófagos , Infecções por Orthomyxoviridae , Proteína A Associada a Surfactante Pulmonar , Animais , Camundongos , Hemaglutininas , Macrófagos/imunologia , Macrófagos/virologia , Proteína A Associada a Surfactante Pulmonar/imunologia , Infecções por Orthomyxoviridae/imunologia
13.
J Virol ; 97(2): e0142322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36692289

RESUMO

Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.


Assuntos
Doenças dos Bovinos , Interações entre Hospedeiro e Microrganismos , Infecções por Mycoplasma , Infecções por Orthomyxoviridae , Transdução de Sinais , Thogotovirus , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Mycoplasma bovis/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/imunologia , Superinfecção/imunologia , Superinfecção/veterinária , Receptor 2 Toll-Like , Interações entre Hospedeiro e Microrganismos/imunologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/virologia
14.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3390-3405, 2022 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-36151808

RESUMO

Influenza B virus (IBV) is more likely to cause complications than influenza A virus (IAV) and even causes higher disease burden than IAV in a certain season, but IBV has received less attention. In order to analyze the genetic evolution characteristics of the clinical strain IBV (B/Guangxi-Jiangzhou/1352/2018), we constructed genetic evolution trees and analyzed the homology and different amino acids of hemagglutinin and neuraminidase referring to the vaccine strains recommended by World Health Organization (WHO). We found that strain B/Guangxi-Jiangzhou/1352/2018 was free of interlineage reassortment and poorly matched with the vaccine strain B/Colorado/06/2017 of the same year. We also determined the median lethal dose (LD50) and the pathogenicity of strain B/Guangxi-Jiangzhou/1352/2018 in mice. The results showed that the LD50 was 105.9 TCID50 (median tissue culture infective dose), the IBV titer in the lungs reached peak 1 d post infection and the mRNA level of the most of inflammatory cytokines in the lungs reached peak 12 h post infection. The alveoli in the lungs were severely damaged and a large number of inflammatory cells were infiltrated post infection. The study demonstrated that the clinical strain IBV (B/Guangxi-Jiangzhou/1352/2018) could infect mice and induce typical lung inflammation. This will facilitate the research on the pathogenesis and transmission mechanism of IBV, and provide an ideal animal model for evaluation of new vaccines, antiviral and anti-inflammatory drug.


Assuntos
Vírus da Influenza B , Influenza Humana , Aminoácidos/genética , Animais , Antivirais/farmacologia , China , Citocinas/metabolismo , Hemaglutininas/metabolismo , Humanos , Vírus da Influenza B/genética , Vírus da Influenza B/patogenicidade , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Neuraminidase/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Filogenia , RNA Mensageiro/metabolismo , Virulência/genética
15.
Front Immunol ; 13: 958801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091002

RESUMO

Fatal influenza (flu) virus infection often activates excessive inflammatory signals, leading to multi-organ failure and death, also referred to as cytokine storm. PPARγ (Peroxisome proliferator-activated receptor gamma) agonists are well-known candidates for cytokine storm modulation. The present study identified that influenza infection reduced PPARγ expression and decreased PPARγ transcription activity in human alveolar macrophages (AMs) from different donors. Treatment with PPARγ agonist Troglitazone ameliorated virus-induced proinflammatory cytokine secretion but did not interfere with the IFN-induced antiviral pathway in human AMs. In contrast, PPARγ antagonist and knockdown of PPARγ in human AMs further enhanced virus-stimulated proinflammatory response. In a mouse model of influenza infection, flu virus dose-dependently reduced PPARγ transcriptional activity and decreased expression of PPARγ. Moreover, PPARγ agonist troglitazone significantly reduced high doses of influenza infection-induced lung pathology. In addition, flu infection reduced PPARγ expression in all mouse macrophages, including AMs, interstitial macrophages, and bone-marrow-derived macrophages but not in alveolar epithelial cells. Our results indicate that the influenza virus specifically targets the PPARγ pathway in macrophages to cause acute injury to the lung.


Assuntos
Antivirais , Influenza Humana , Pulmão , Macrófagos , PPAR gama , Troglitazona , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Animais , Antivirais/imunologia , Antivirais/uso terapêutico , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Influenza Humana/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Camundongos , Orthomyxoviridae , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/imunologia , Troglitazona/imunologia , Troglitazona/uso terapêutico
16.
mBio ; 13(5): e0210622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094090

RESUMO

Females have long been described to generate superior humoral immune responses relative to those in males. In the article by Ursin et al. (R. L. Ursin, S. Dhakal, H. Liu, S. Jayaraman, et al., mBio 13:e01839-22, 2022, https://doi.org/10.1128/mbio.01839-22), the authors showed that female mice generated a more robust, broadly reactive, and protective humoral immune response against influenza viruses in comparison to their male counterparts. Female mice demonstrated more efficient germinal center responses, including increased class switching and affinity maturation. Therefore, sex plays an important role in acquisition of protection against influenza viruses by modulating the generation of protective B cell responses. In this commentary, we dive into how this study builds on our understanding of how females generate superior antibody responses against influenza viruses and how this informs vaccine design.


Assuntos
Anticorpos Antivirais , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Feminino , Masculino , Camundongos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Imunidade Humoral , Vacinas contra Influenza , Infecções por Orthomyxoviridae/imunologia
17.
J Virol ; 96(15): e0068922, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35862698

RESUMO

Vaccines targeting SARS-CoV-2 have been shown to be highly effective; however, the breadth against emerging variants and the longevity of protection remains unclear. Postimmunization boosting has been shown to be beneficial for disease protection, and as new variants continue to emerge, periodic (and perhaps annual) vaccination will likely be recommended. New seasonal influenza virus vaccines currently need to be developed every year due to continual antigenic drift, an undertaking made possible by a robust global vaccine production and distribution infrastructure. To create a seasonal combination vaccine targeting both influenza viruses and SARS-CoV-2 that is also amenable to frequent reformulation, we have developed an influenza A virus (IAV) genetic platform that allows the incorporation of an immunogenic domain of the SARS-CoV-2 spike (S) protein onto IAV particles. Vaccination with this combination vaccine elicited neutralizing antibodies and provided protection from lethal challenge with both pathogens in mice. This approach may allow the leveraging of established influenza vaccine infrastructure to generate a cost-effective and scalable seasonal vaccine solution for both influenza and coronaviruses. IMPORTANCE The rapid emergence of SARS-CoV-2 variants since the onset of the pandemic has highlighted the need for both periodic vaccination "boosts" and a platform that can be rapidly reformulated to manufacture new vaccines. In this work, we report an approach that can utilize current influenza vaccine manufacturing infrastructure to generate combination vaccines capable of protecting from both influenza virus- and SARS-CoV-2-induced disease. The production of a combined influenza/SARS-CoV-2 vaccine may represent a practical solution to boost immunity to these important respiratory viruses without the increased cost and administration burden of multiple independent vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , SARS-CoV-2 , Vacinas Combinadas , Vírion , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Humanos , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia
18.
Nature ; 607(7919): 578-584, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636458

RESUMO

The nervous and immune systems are intricately linked1. Although psychological stress is known to modulate immune function, mechanistic pathways linking stress networks in the brain to peripheral leukocytes remain poorly understood2. Here we show that distinct brain regions shape leukocyte distribution and function throughout the body during acute stress in mice. Using optogenetics and chemogenetics, we demonstrate that motor circuits induce rapid neutrophil mobilization from the bone marrow to peripheral tissues through skeletal-muscle-derived neutrophil-attracting chemokines. Conversely, the paraventricular hypothalamus controls monocyte and lymphocyte egress from secondary lymphoid organs and blood to the bone marrow through direct, cell-intrinsic glucocorticoid signalling. These stress-induced, counter-directional, population-wide leukocyte shifts are associated with altered disease susceptibility. On the one hand, acute stress changes innate immunity by reprogramming neutrophils and directing their recruitment to sites of injury. On the other hand, corticotropin-releasing hormone neuron-mediated leukocyte shifts protect against the acquisition of autoimmunity, but impair immunity to SARS-CoV-2 and influenza infection. Collectively, these data show that distinct brain regions differentially and rapidly tailor the leukocyte landscape during psychological stress, therefore calibrating the ability of the immune system to respond to physical threats.


Assuntos
Encéfalo , Medo , Leucócitos , Neurônios Motores , Vias Neurais , Estresse Psicológico , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Encéfalo/citologia , Encéfalo/fisiologia , COVID-19/imunologia , Quimiocinas/imunologia , Suscetibilidade a Doenças , Medo/fisiologia , Glucocorticoides/metabolismo , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Linfócitos/citologia , Linfócitos/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Camundongos , Monócitos/citologia , Monócitos/imunologia , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Neutrófilos/citologia , Neutrófilos/imunologia , Optogenética , Infecções por Orthomyxoviridae/imunologia , Núcleo Hipotalâmico Paraventricular/fisiologia , SARS-CoV-2/imunologia , Estresse Psicológico/imunologia , Estresse Psicológico/fisiopatologia
19.
J Virol ; 96(9): e0002622, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404084

RESUMO

Humoral immunity is a major component of the adaptive immune response against viruses and other pathogens with pathogen-specific antibody acting as the first line of defense against infection. Virus-specific antibody levels are maintained by continual secretion of antibody by plasma cells residing in the bone marrow. This raises the important question of how the virus-specific plasma cell population is stably maintained and whether memory B cells are required to replenish plasma cells, balancing their loss arising from their intrinsic death rate. In this study, we examined the longevity of virus-specific antibody responses in the serum of mice following acute viral infection with three different viruses: lymphocytic choriomeningitis virus (LCMV), influenza virus, and vesicular stomatitis virus (VSV). To investigate the contribution of memory B cells to the maintenance of virus-specific antibody levels, we employed human CD20 transgenic mice, which allow for the efficient depletion of B cells with rituximab, a human CD20-specific monoclonal antibody. Mice that had resolved an acute infection with LCMV, influenza virus, or VSV were treated with rituximab starting at 2 months after infection, and the treatment was continued for up to a year postinfection. This treatment regimen with rituximab resulted in efficient depletion of B cells (>95%), with virus-specific memory B cells being undetectable. There was an early transient drop in the antibody levels after rituximab treatment followed by a plateauing of the curve with virus-specific antibody levels remaining relatively stable (half-life of 372 days) for up to a year after infection in the absence of memory B cells. The number of virus-specific plasma cells in the bone marrow were consistent with the changes seen in serum antibody levels. Overall, our data show that virus-specific plasma cells in the bone marrow are intrinsically long-lived and can maintain serum antibody titers for extended periods of time without requiring significant replenishment from memory B cells. These results provide insight into plasma cell longevity and have implications for B cell depletion regimens in cancer and autoimmune patients in the context of vaccination in general and especially for COVID-19 vaccines. IMPORTANCE Following vaccination or primary virus infection, virus-specific antibodies provide the first line of defense against reinfection. Plasma cells residing in the bone marrow constitutively secrete antibodies, are long-lived, and can thus maintain serum antibody levels over extended periods of time in the absence of antigen. Our data, in the murine model system, show that virus-specific plasma cells are intrinsically long-lived but that some reseeding by memory B cells might occur. Our findings demonstrate that, due to the longevity of plasma cells, virus-specific antibody levels remain relatively stable in the absence of memory B cells and have implications for vaccination.


Assuntos
Anticorpos Antivirais , Coriomeningite Linfocítica , Células B de Memória , Rituximab , Animais , Anticorpos Antivirais/sangue , Humanos , Imunidade Humoral , Memória Imunológica , Coriomeningite Linfocítica/imunologia , Células B de Memória/citologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Plasmócitos/citologia , Infecções por Rhabdoviridae/imunologia , Rituximab/farmacologia
20.
J Virol ; 96(9): e0035222, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35446142

RESUMO

Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.


Assuntos
Enterite , Vírus da Influenza A , Intestino Delgado , Infecções por Orthomyxoviridae , Animais , Enterite/imunologia , Enterite/fisiopatologia , Enterite/virologia , Humanos , Imunidade Inata , Vírus da Influenza A/imunologia , Intestino Delgado/citologia , Intestino Delgado/virologia , Linfócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/fisiopatologia , Infecções por Orthomyxoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...